Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus2(X, s1(Y)) -> pred1(minus2(X, Y))
minus2(X, 0) -> X
pred1(s1(X)) -> X
le2(s1(X), s1(Y)) -> le2(X, Y)
le2(s1(X), 0) -> false
le2(0, Y) -> true
gcd2(0, Y) -> 0
gcd2(s1(X), 0) -> s1(X)
gcd2(s1(X), s1(Y)) -> if3(le2(Y, X), s1(X), s1(Y))
if3(true, s1(X), s1(Y)) -> gcd2(minus2(X, Y), s1(Y))
if3(false, s1(X), s1(Y)) -> gcd2(minus2(Y, X), s1(X))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
minus2(X, s1(Y)) -> pred1(minus2(X, Y))
minus2(X, 0) -> X
pred1(s1(X)) -> X
le2(s1(X), s1(Y)) -> le2(X, Y)
le2(s1(X), 0) -> false
le2(0, Y) -> true
gcd2(0, Y) -> 0
gcd2(s1(X), 0) -> s1(X)
gcd2(s1(X), s1(Y)) -> if3(le2(Y, X), s1(X), s1(Y))
if3(true, s1(X), s1(Y)) -> gcd2(minus2(X, Y), s1(Y))
if3(false, s1(X), s1(Y)) -> gcd2(minus2(Y, X), s1(X))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
minus2(X, s1(Y)) -> pred1(minus2(X, Y))
minus2(X, 0) -> X
pred1(s1(X)) -> X
le2(s1(X), s1(Y)) -> le2(X, Y)
le2(s1(X), 0) -> false
le2(0, Y) -> true
gcd2(0, Y) -> 0
gcd2(s1(X), 0) -> s1(X)
gcd2(s1(X), s1(Y)) -> if3(le2(Y, X), s1(X), s1(Y))
if3(true, s1(X), s1(Y)) -> gcd2(minus2(X, Y), s1(Y))
if3(false, s1(X), s1(Y)) -> gcd2(minus2(Y, X), s1(X))
The set Q consists of the following terms:
minus2(x0, s1(x1))
minus2(x0, 0)
pred1(s1(x0))
le2(s1(x0), s1(x1))
le2(s1(x0), 0)
le2(0, x0)
gcd2(0, x0)
gcd2(s1(x0), 0)
gcd2(s1(x0), s1(x1))
if3(true, s1(x0), s1(x1))
if3(false, s1(x0), s1(x1))
Q DP problem:
The TRS P consists of the following rules:
IF3(false, s1(X), s1(Y)) -> MINUS2(Y, X)
IF3(true, s1(X), s1(Y)) -> GCD2(minus2(X, Y), s1(Y))
IF3(false, s1(X), s1(Y)) -> GCD2(minus2(Y, X), s1(X))
MINUS2(X, s1(Y)) -> PRED1(minus2(X, Y))
LE2(s1(X), s1(Y)) -> LE2(X, Y)
GCD2(s1(X), s1(Y)) -> IF3(le2(Y, X), s1(X), s1(Y))
GCD2(s1(X), s1(Y)) -> LE2(Y, X)
IF3(true, s1(X), s1(Y)) -> MINUS2(X, Y)
MINUS2(X, s1(Y)) -> MINUS2(X, Y)
The TRS R consists of the following rules:
minus2(X, s1(Y)) -> pred1(minus2(X, Y))
minus2(X, 0) -> X
pred1(s1(X)) -> X
le2(s1(X), s1(Y)) -> le2(X, Y)
le2(s1(X), 0) -> false
le2(0, Y) -> true
gcd2(0, Y) -> 0
gcd2(s1(X), 0) -> s1(X)
gcd2(s1(X), s1(Y)) -> if3(le2(Y, X), s1(X), s1(Y))
if3(true, s1(X), s1(Y)) -> gcd2(minus2(X, Y), s1(Y))
if3(false, s1(X), s1(Y)) -> gcd2(minus2(Y, X), s1(X))
The set Q consists of the following terms:
minus2(x0, s1(x1))
minus2(x0, 0)
pred1(s1(x0))
le2(s1(x0), s1(x1))
le2(s1(x0), 0)
le2(0, x0)
gcd2(0, x0)
gcd2(s1(x0), 0)
gcd2(s1(x0), s1(x1))
if3(true, s1(x0), s1(x1))
if3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
IF3(false, s1(X), s1(Y)) -> MINUS2(Y, X)
IF3(true, s1(X), s1(Y)) -> GCD2(minus2(X, Y), s1(Y))
IF3(false, s1(X), s1(Y)) -> GCD2(minus2(Y, X), s1(X))
MINUS2(X, s1(Y)) -> PRED1(minus2(X, Y))
LE2(s1(X), s1(Y)) -> LE2(X, Y)
GCD2(s1(X), s1(Y)) -> IF3(le2(Y, X), s1(X), s1(Y))
GCD2(s1(X), s1(Y)) -> LE2(Y, X)
IF3(true, s1(X), s1(Y)) -> MINUS2(X, Y)
MINUS2(X, s1(Y)) -> MINUS2(X, Y)
The TRS R consists of the following rules:
minus2(X, s1(Y)) -> pred1(minus2(X, Y))
minus2(X, 0) -> X
pred1(s1(X)) -> X
le2(s1(X), s1(Y)) -> le2(X, Y)
le2(s1(X), 0) -> false
le2(0, Y) -> true
gcd2(0, Y) -> 0
gcd2(s1(X), 0) -> s1(X)
gcd2(s1(X), s1(Y)) -> if3(le2(Y, X), s1(X), s1(Y))
if3(true, s1(X), s1(Y)) -> gcd2(minus2(X, Y), s1(Y))
if3(false, s1(X), s1(Y)) -> gcd2(minus2(Y, X), s1(X))
The set Q consists of the following terms:
minus2(x0, s1(x1))
minus2(x0, 0)
pred1(s1(x0))
le2(s1(x0), s1(x1))
le2(s1(x0), 0)
le2(0, x0)
gcd2(0, x0)
gcd2(s1(x0), 0)
gcd2(s1(x0), s1(x1))
if3(true, s1(x0), s1(x1))
if3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 4 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LE2(s1(X), s1(Y)) -> LE2(X, Y)
The TRS R consists of the following rules:
minus2(X, s1(Y)) -> pred1(minus2(X, Y))
minus2(X, 0) -> X
pred1(s1(X)) -> X
le2(s1(X), s1(Y)) -> le2(X, Y)
le2(s1(X), 0) -> false
le2(0, Y) -> true
gcd2(0, Y) -> 0
gcd2(s1(X), 0) -> s1(X)
gcd2(s1(X), s1(Y)) -> if3(le2(Y, X), s1(X), s1(Y))
if3(true, s1(X), s1(Y)) -> gcd2(minus2(X, Y), s1(Y))
if3(false, s1(X), s1(Y)) -> gcd2(minus2(Y, X), s1(X))
The set Q consists of the following terms:
minus2(x0, s1(x1))
minus2(x0, 0)
pred1(s1(x0))
le2(s1(x0), s1(x1))
le2(s1(x0), 0)
le2(0, x0)
gcd2(0, x0)
gcd2(s1(x0), 0)
gcd2(s1(x0), s1(x1))
if3(true, s1(x0), s1(x1))
if3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
LE2(s1(X), s1(Y)) -> LE2(X, Y)
Used argument filtering: LE2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus2(X, s1(Y)) -> pred1(minus2(X, Y))
minus2(X, 0) -> X
pred1(s1(X)) -> X
le2(s1(X), s1(Y)) -> le2(X, Y)
le2(s1(X), 0) -> false
le2(0, Y) -> true
gcd2(0, Y) -> 0
gcd2(s1(X), 0) -> s1(X)
gcd2(s1(X), s1(Y)) -> if3(le2(Y, X), s1(X), s1(Y))
if3(true, s1(X), s1(Y)) -> gcd2(minus2(X, Y), s1(Y))
if3(false, s1(X), s1(Y)) -> gcd2(minus2(Y, X), s1(X))
The set Q consists of the following terms:
minus2(x0, s1(x1))
minus2(x0, 0)
pred1(s1(x0))
le2(s1(x0), s1(x1))
le2(s1(x0), 0)
le2(0, x0)
gcd2(0, x0)
gcd2(s1(x0), 0)
gcd2(s1(x0), s1(x1))
if3(true, s1(x0), s1(x1))
if3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MINUS2(X, s1(Y)) -> MINUS2(X, Y)
The TRS R consists of the following rules:
minus2(X, s1(Y)) -> pred1(minus2(X, Y))
minus2(X, 0) -> X
pred1(s1(X)) -> X
le2(s1(X), s1(Y)) -> le2(X, Y)
le2(s1(X), 0) -> false
le2(0, Y) -> true
gcd2(0, Y) -> 0
gcd2(s1(X), 0) -> s1(X)
gcd2(s1(X), s1(Y)) -> if3(le2(Y, X), s1(X), s1(Y))
if3(true, s1(X), s1(Y)) -> gcd2(minus2(X, Y), s1(Y))
if3(false, s1(X), s1(Y)) -> gcd2(minus2(Y, X), s1(X))
The set Q consists of the following terms:
minus2(x0, s1(x1))
minus2(x0, 0)
pred1(s1(x0))
le2(s1(x0), s1(x1))
le2(s1(x0), 0)
le2(0, x0)
gcd2(0, x0)
gcd2(s1(x0), 0)
gcd2(s1(x0), s1(x1))
if3(true, s1(x0), s1(x1))
if3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
MINUS2(X, s1(Y)) -> MINUS2(X, Y)
Used argument filtering: MINUS2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus2(X, s1(Y)) -> pred1(minus2(X, Y))
minus2(X, 0) -> X
pred1(s1(X)) -> X
le2(s1(X), s1(Y)) -> le2(X, Y)
le2(s1(X), 0) -> false
le2(0, Y) -> true
gcd2(0, Y) -> 0
gcd2(s1(X), 0) -> s1(X)
gcd2(s1(X), s1(Y)) -> if3(le2(Y, X), s1(X), s1(Y))
if3(true, s1(X), s1(Y)) -> gcd2(minus2(X, Y), s1(Y))
if3(false, s1(X), s1(Y)) -> gcd2(minus2(Y, X), s1(X))
The set Q consists of the following terms:
minus2(x0, s1(x1))
minus2(x0, 0)
pred1(s1(x0))
le2(s1(x0), s1(x1))
le2(s1(x0), 0)
le2(0, x0)
gcd2(0, x0)
gcd2(s1(x0), 0)
gcd2(s1(x0), s1(x1))
if3(true, s1(x0), s1(x1))
if3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
IF3(true, s1(X), s1(Y)) -> GCD2(minus2(X, Y), s1(Y))
IF3(false, s1(X), s1(Y)) -> GCD2(minus2(Y, X), s1(X))
GCD2(s1(X), s1(Y)) -> IF3(le2(Y, X), s1(X), s1(Y))
The TRS R consists of the following rules:
minus2(X, s1(Y)) -> pred1(minus2(X, Y))
minus2(X, 0) -> X
pred1(s1(X)) -> X
le2(s1(X), s1(Y)) -> le2(X, Y)
le2(s1(X), 0) -> false
le2(0, Y) -> true
gcd2(0, Y) -> 0
gcd2(s1(X), 0) -> s1(X)
gcd2(s1(X), s1(Y)) -> if3(le2(Y, X), s1(X), s1(Y))
if3(true, s1(X), s1(Y)) -> gcd2(minus2(X, Y), s1(Y))
if3(false, s1(X), s1(Y)) -> gcd2(minus2(Y, X), s1(X))
The set Q consists of the following terms:
minus2(x0, s1(x1))
minus2(x0, 0)
pred1(s1(x0))
le2(s1(x0), s1(x1))
le2(s1(x0), 0)
le2(0, x0)
gcd2(0, x0)
gcd2(s1(x0), 0)
gcd2(s1(x0), s1(x1))
if3(true, s1(x0), s1(x1))
if3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.